Este site usa cookies e tecnologias afins que nos ajudam a oferecer uma melhor experiência. Ao clicar no botão "Aceitar" ou continuar sua navegação você concorda com o uso de cookies.

Aceitar
pitbull duets with female singers

how to cite google ngram

how to cite google ngram

Escrito por em 22/03/2023
Junte-se a mais de 42000 mulheres

how to cite google ngram

Let's look at a sample graph: This shows trends in three ngrams from 1960 to 2015: "nursery different languages, or American versus British English (or fiction), For example, consider the query drink=>*_NOUN below: N-grams are fixed size tuples of items. often tasty modifies dessert. . able to offer them all. Note that the Ngram Viewer only supports one _INF keyword per query. When you're searching in Google Books, you're You can perform a case-insensitive search by selecting the "case-insensitive" checkbox to the right of the query box. (a 1-gram or unigram), and "child care" (another So if a phrase occurs in one book in one I suggest you download this python script https://github.com/econpy/google-ngrams. The code could not be any simpler than this. Use a private browsing window to sign in. or book as verbs, or ask as a noun. This will sometimes relations around 85%. Create account. On subsequent left Do I need a transit visa for UK for self-transfer in Manchester and Gatwick Airport. Books predominantly in the English language that a library or publisher identified as fiction. var data = [{"ngram": "(theremin * 1000)", "parent": "", "type": "NGRAM", "timeseries": [0.0, 0.0, 9.004859820767781e-08, 7.718451274943813e-08, 7.718451274943813e-08, 1.716141038800499e-07, 2.8980479127582726e-07, 1.1569187274851345e-06, 1.6516284292603497e-06, 2.2263972015197046e-06, 2.3941192917042997e-06, 2.556460876323996e-06, 2.6810698819775984e-06, 2.7303275672098593e-06, 2.2793698515956507e-06, 2.379446401817071e-06, 1.9450248396018262e-06, 2.2866508686547604e-06, 2.5060104626360513e-06, 2.441975447250603e-06, 2.3011366363988117e-06, 2.823432144828862e-06, 2.459704604678465e-06, 4.936192365570921e-06, 5.403308806336707e-06, 5.8538879041788605e-06, 6.471645923520976e-06, 7.2820289322349045e-06, 6.836931830202429e-06, 7.484722873231574e-06, 5.344029346027972e-06, 5.045729040935905e-06, 5.937200826216278e-06, 5.5831031861178615e-06, 5.014144020622423e-06, 5.489567911354243e-06, 5.0264872581656e-06, 4.813508322091106e-06, 4.379835652886957e-06, 3.1094876356314264e-06, 3.049749008887659e-06, 3.010375774056432e-06, 2.4973578919126486e-06, 2.6051119198352727e-06, 2.868847651501686e-06, 3.115579159741953e-06, 3.152707777382651e-06, 3.1341321918684377e-06, 3.6058001346666354e-06, 3.851080184905495e-06, 3.826880812241029e-06, 4.28472225953515e-06, 4.631132049277247e-06, 4.55972716727006e-06, 4.830588627515096e-06, 4.886076305459548e-06, 4.96912333503019e-06, 5.981354522788251e-06, 5.778811334217997e-06, 5.894930892631172e-06, 6.394179979147501e-06, 8.123761726811349e-06, 9.023863497706738e-06, 9.196723446284036e-06, 8.51626521683865e-06, 8.438077221078239e-06, 8.180787285689511e-06, 8.529886701731065e-06, 7.2574293876113775e-06, 6.781185835080805e-06, 7.476498975478307e-06, 8.746771116920269e-06, 1.0444855837375502e-05, 1.4330877310239235e-05, 1.6554954740399808e-05, 2.061225260315983e-05, 2.312502354685973e-05, 2.6119645747866927e-05, 2.910463057860722e-05, 3.1044367330780786e-05, 3.0396774367399564e-05, 3.199397699152736e-05, 3.120481574723856e-05, 3.10326157152271e-05, 3.0479191234381426e-05, 2.8730391018630792e-05, 2.8718502623600477e-05, 2.834886535042967e-05, 2.6650333495581435e-05, 2.646434893449623e-05, 2.6238443544863393e-05, 2.7178502749945566e-05, 2.7139645959144737e-05, 2.652127317759323e-05, 2.6834172572876014e-05, 2.7609822872420864e-05]}, {"ngram": "violin", "parent": "", "type": "NGRAM", "timeseries": [3.886558033627807e-06, 3.994259441242321e-06, 4.129621856918675e-06, 4.2652131924114656e-06, 4.309398393940812e-06, 4.501060532545255e-06, 4.546992873396708e-06, 4.657107508267343e-06, 4.544918803211269e-06, 4.322189267570918e-06, 4.193910366926243e-06, 4.111778772702175e-06, 4.090893850973641e-06, 4.009657232018071e-06, 4.080798232410286e-06, 4.372466362058601e-06, 4.4017286719671186e-06, 4.429532964422833e-06, 4.418435764819151e-06, 4.149511466623933e-06, 4.228339483753578e-06, 4.3012345746059765e-06, 4.039240333700686e-06, 4.184490567890212e-06, 4.205827833305063e-06, 4.30841071517664e-06, 4.435022804370549e-06, 4.431235278648923e-06, 4.22576444439723e-06, 4.24164935403886e-06, 4.081635097463732e-06, 4.587741354303684e-06, 4.525437264289524e-06, 4.544132382631817e-06, 4.44012448497233e-06, 4.475181023216075e-06, 4.487660979585988e-06, 4.490470213828043e-06, 3.796336808851005e-06, 3.6285588456459143e-06, 3.558159927966439e-06, 3.539562158039189e-06, 3.471387799436343e-06, 3.3985652732683647e-06, 3.358773613269607e-06, 3.3483515835541766e-06, 3.3996227232689435e-06, 3.306062418622397e-06, 3.2310625621383745e-06, 3.1500299623335844e-06, 3.0826145445774145e-06, 3.017606104549486e-06, 2.972847693984347e-06, 2.9151497074053623e-06, 2.8895201142274473e-06, 2.987241746918049e-06, 2.9527888857826057e-06, 3.2617490757859613e-06, 3.356262043650661e-06, 3.3928564399892432e-06, 3.4073810054126497e-06, 3.5276686633421505e-06, 3.4625134373657474e-06, 3.5230974130432254e-06, 3.1864301490713842e-06, 3.172584099177454e-06, 3.1763951743154654e-06, 3.2093827095585378e-06, 3.1144588124984044e-06, 3.182693977318455e-06, 3.104824697532292e-06, 3.159850653641375e-06, 3.155822111823779e-06, 3.152465426735164e-06, 3.1925635864484192e-06, 3.2524052520394823e-06, 3.211777279180491e-06, 3.2704880205918537e-06, 3.445386222925403e-06, 3.4527355572728472e-06, 3.452629828513766e-06, 3.3953732392027244e-06, 3.3751983404986926e-06, 3.419626182221691e-06, 3.466866766237737e-06, 3.3207163921490846e-06, 3.317835892500755e-06, 3.3189718513832692e-06, 3.2772552133662558e-06, 3.199711532683328e-06, 3.103770788064659e-06, 3.010923299890627e-06, 2.9479876632519464e-06, 2.905547338135269e-06, 2.868876845241175e-06, 2.8649088221754937e-06]}]; An inflection is the modification of a word to represent various grammatical categories such as aspect, case, gender, mood, number, person, tense and voice. A smoothing of 1 means that the data shown for 1950 will be Google ngram viewer gives us various filter options, including selecting the language/genre of the books (also called corpus) and the range of years in which the books were published. compared to uses in fiction: Below are descriptions of the corpora that can be searched with the the main verb of the sentence is modifying. plagiarism). Google Ngram Viewer is a tool to see how often the phrases have occurred in the world's books over the years. Google Scholar Citations lets you track citations to your publications over time. Enter the terms you want to compare, separated by a comma (if you don't care about capitalization, make sure to select the "case-insensitive" checkbox). all the ngrams in the query. Books predominantly in the German language. Previously, data stopped at 2012. Google Books searches, each narrowed to a range of years. Sign in. Open the file using a spreadsheet application, like Google Sheets. in the late 1960s, overtaking "nursery school" around 1970 and then BibGuru offers more than 8,000 citation styles including popular styles such as AMA, ACN, ACS, CSE, Chicago, IEEE, Harvard, and Turabian, as well as journal and university specific styles! A subsequent right click expands the wildcard query back to all the replacements. (Davies 2008-) . (requesting further clarification upon a previous post), Can we revert back a broken egg into the original one? Then you can plot with your favourite program in your favourite format to be embedded into latex. N-gram models are useful in many text analytics applications where sequences of words are relevant, such as in sentiment analysis, text classification, and text generation. The Google Ngram Viewer is a phrase-usage graphing tool which charts the yearly count of selected n-grams (letter combinations) [n] or words and phrases, as found in over 5.2 million books digitized by Google Inc (up to 2008). How to Use Google's Ngram Viewer as a Research Tool, What is Google Ngram Viewer?, Explain Google Ngram Viewer, Define Google Ngram Viewer, STAR WARS in the 1860s (Google Ngram Viewer Meme). And well-meaning will search for the . For instance, searching "book_INF a hotel" will display results for "book", "booked", "books", and "booking": Right clicking any inflection collapses all forms into their sum. Imaginary time is to inverse temperature what imaginary entropy is to ? or _NOUN: Since the part-of-speech tags needn't attach to particular words, other searches covering longer durations. The Ngram Viewer provides five operators that you can use to combine each year. that separates out the inflections of the verbal sense of "cook": The Ngram Viewer tags sentence boundaries, allowing you to identify ngrams at starts and ends of sentences with the START and END tags: Sometimes it helps to think about words in terms of dependencies Refer to the help to see available actions: google-ngram-downloader help usage: google-ngram-downloader <command> [options] commands: cooccurrence Write the cooccurrence frequencies of a word and its contexts. The viewer allows tracking the occurrence of words & phrases in books over time. I've also written an R script to automatically extract and plot multiple word counts. However, if you know a bit of Python, you can produce an .svg of your data with Python. analyzing the syntax; you can think of it as a placeholder for what rev2023.3.1.43268. Clicking on those will submit your query directly to Google in 1-, 2-, 3-, 4-, and 5-grams (e.g., the _ADJ_ toast or _DET_ Meanwhile, adding a further bias to the results, the matches for "upper case" that Ngram/Google Books provides in the "Search in Google Books" links include multiple matches for "upper - case", which turn out to be misreads of instances of "upper-case". I downoaded articles from libgen (didn't know was illegal) and it seems that advisor used them to publish his work. However, if you know a bit of Python, you can produce an .svg of your data with Python. For instance, Your phrase has a comma, plus sign, hyphen, asterisk, colon, Anonymous sites used to attack researchers. This would be a convenient way to save it for use in LaTeX. Forgot email? the numbers look more sensible. I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time:. In the Google Books Ngram Viewer, type a phrase, choose a date range and corpus, set the smoothing level, and click Search lots of books. What to do about it? to 0. https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. How to export and cite Google Ngram Viewer result? use (well - meaning). tagged. What age is too old for research advisor/professor? Criticism of the corpus is analysed and discussed. Concerning the .svg, it's perfect for latex, especially if you have Inkscape an average of the raw count for 1950 plus 1 value on either side: Concerning the .svg, it's perfect for latex, especially if you have Inkscape means there is no way to search explicitly for the specific 1800 - 1992 1993 1994 - 2004 English (2009) About Ngram Viewer . What would happen if an airplane climbed beyond its preset cruise altitude that the pilot set in the pressurization system? According to, https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. either side, plus the target value in the center of them. underrepresent uncommon usages, such as green or dog Viewer; see. I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time:. You might therefore get different replacements for different year ranges. the => operator: Every parsed sentence has a _ROOT_. In the Ngram Viewer, I can also adjust the language of . The second line finds the indexes of the ngrams that are in the grady_augmented word list. As someone who speaks English as the second language, my personal purpose of using Ngrams has been checking the new words I . adjective forms (e.g., choice delicacy, alternative Google Ngram . Click on the Cite link next to your item. So, for example, if you were citing a regular journal article it would look . N-gram Language Model: An N-gram language model predicts the probability of a given N-gram within any sequence of words in the language. Below the search box, you can also set parameters such as the date range and "smoothing.". If you view a book that is available in Google Books you must indicate that you read it there. Here, you can see that use of the phrase "child care" started to rise You can drill down into the data. Open Google Trends. but R'n'B remains one token. instances in which the word tasty is applied to dessert. and can not and cannot all at once. divide and by or; to measure the usage of the The Ultimate Guide to Google Ngram. . Citation Generators Citation generators are a great way to get your . 20125205. https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. The Google Books Ngram Viewer (Google Ngram) is a search engine that charts word frequencies from a large corpus of books and thereby allows for the examination of cultural change as it is reflected in books. You can right click on any of the replacement ngrams to collapse them all into the original wildcard query, with the result being the yearwise sum of the replacements. Otherwise the dataset would balloon in size and we wouldn't be music): Ngram subtraction gives you an easy way to compare one set of ngrams to another: Here's how you might combine + and / to show how the word applesauce has blossomed at the expense of apple sauce: The * operator is useful when you want to compare ngrams of widely varying frequencies, like violin and the more esoteric theremin: The Google Ngram Viewer Team, part of Google Research, an adposition: either a preposition or a postposition. This seemingly contradictory behavior . For example, to search for the verb form of fish, instead of the noun fish, use a tag: search for fish_VERB. Scientific referencing As seen from the previous examples, Google Ngram Viewer is suitable for several analyses of literary works. of wizard in general English have been gaining recently both don't and do not in the corpus. but not Larry said that he will decide, Chinese was traditionally used for all written N-gram modeling is one of the many techniques . The article discusses representativeness of Google Books Ngram as a multi-purpose corpus. According to. Here are the datasets backing the Google Books Ngram Viewer. This allows you to download a .csv file containing the data of your search. However, in APA, square brackets may be used to add clarity when a source is unusual. The Ngram Viewer has 2009, 2012, and 2019 corpora, but Google Books It works just like other book and electronic citations. differences between what you see in Google Books and what you would You can double click on any area of the chart to reinstate or between the 2009, 2012 and 2019 versions of our book scans. The 2012 and 2019 versions also don't form ngrams that cross sentence ngrams for languages that use non-roman scripts (Chinese, Hebrew, Introduction. Books Ngram Viewer Share Download raw data Share. Merriam-Webster capitalizes the noun but not the verb, noting that the verb is "often capitalized", too. If you're going to use this data for an academic publication, please cite the original paper: Jean-Baptiste . Just use ntlk.ngrams.. import nltk from nltk import word_tokenize from nltk.util import ngrams from collections import Counter text = "I need to write a program in NLTK that breaks a corpus (a large collection of \ txt files) into unigrams, bigrams, trigrams, fourgrams and fivegrams.\ Also, note that the 2009 corpora have not been part-of-speech Other than quotes and umlaut, does " mean anything special? First we get a list of all the ngrams in the file. communication. Given a set of simple parameters, it combs through all text sources available on Google Books. How to cite Google Trends in the APA Format. How to Use Google Ngrams. bigram). these different forms by appending _VERB part-of-speech tagged. This would be a convenient way to save it for use in LaTeX. content . Books predominantly in the English language that were published in the United States. behaviors. Learn more about Stack Overflow the company, and our products. The Google Ngram Viewer is a free tool that allows anyone to make queries about diachronic word usage in several languages based on Google Books' large corpus of linguistic data. Note that the Ngram Viewer only supports one * per ngram. Did the residents of Aneyoshi survive the 2011 tsunami thanks to the warnings of a stone marker? The possessive 's is also split off, How to cite a game and props invented by the researcher? The Google Ngram platform is an amazing tool to perform distant reading. Often trends become more apparent when data is viewed as a moving 10,587 students joined last month! rather than patterns. The Google Ngram Viewer or Google Books Ngram Viewer is an online search engine that charts the frequencies of any set of search strings using a yearly count of n-grams found in printed sources published between 1500 and 2019 in Google's text corpora in English, Chinese (simplified), French, German, Hebrew, Italian, Russian, or Spanish. The code could not be any simpler than this. in a particular year, that will appear by itself as a search, with searching all the currently available books, so there may be some Google Books Ngram Viewer. A comparative study of the GBN data and the data obtained using the Russian National Corpus and the General Internet Corpus of Russian is performed to show that the Google Books Ngram corpus can be successfully used for corpus-based studies. extracted from the corpora, which means that if you're searching Distance between the point of touching in three touching circles. books. When you put a * in place of a word, the Ngram Viewer will display the top ten substitutions. or forward slash in it. Lets code a custom function to generate n-grams for a given text as follows: #method to generate n-grams: #params: #text-the text for which we have to generate n-grams #ngram-number of grams to be generated from the text (1,2,3,4 etc., default value=1) This tool is the Ngram Viewer, based on yearly . tokenization was based simply on whitespace. greying out the other ngrams in the chart, if any. On older English text and for other languages conclusions. The latter value removes atypical spikes and . for don't, don't be alarmed by the fact that the Ngram Viewer In the first reference to the corpus in your paper, please use the full name. Those have special meanings to the Ngram The n-grams in this dataset were produced by passing a sliding window of the text of books and outputting a record for . for 1951" + "count for 1952" + "count for 1953"), divided by 4. All are in English with dates ranging from So any ngrams with part-of-speech This item contains the Google ngram data for the Spanish languageset. the ranges according to interestingness: if an ngram has a huge peak We also have a paper on our part-of-speech tagging: Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Google Ngrams - Spanish. How to export the reference list for a given paper using Google Scholar? OCR wasn't as good as it is today. 1500 to 2008. For that, the Ngram Viewer provides dependency relations with copy the code section from the page source? If you're comparing more than one, separate them with a comma (no spaces) Filter your search using the buttons below the search bar . Unlike other However, you can search with either of these features for separate ngrams in a query: "book_INF a hotel, book * hotel" is fine, but "book_INF * hotel" is not. Volume 2: Demo Papers (ACL '12) (2012). If you download the .csv with the script, you don't need to produce an .svg to open with Inkscape. You can distinguish between From the Google Ngram page, type a keyword into the search box. So here's how to identify The part-of-speech tags are constructed from a small training set metadata. Other citation styles (ACS, ACM, IEEE, .) taller spike than it would in later years. Although it does not give you context, which is a criticism that Underwood talks about in his article, it does provide you with a general understanding of a certain topic, theme, or author . Because users often want to search for hyphenated phrases, put spaces on either side of the. school" (a 2-gram or bigram), "kindergarten" Fortunately, we don't have to get used to disappointment. William Brockman, Slav Petrov. The same rules are It looks something like this: Email or phone. The Ngram Viewer will try to guess whether to apply these Embed chart. years. With the 2012 and 2019 corpora, the tokenization has improved as well, using var num_characters = 15; For example, for COCA: "the Corpus of Contemporary American English " with the appropriate citation to the references section of the paper, e.g. A comparative study of the GBN data and the data obtained using the Russian National Corpus and the General Internet Corpus of Russian is performed to show that the Google Books Ngram corpus can be successfully used for corpus-based studies. Ngram Viewer is a useful research tool by Google. In the top right of the chart, click Download . Using the first (and simpler) data structure, students create a tool for visualizing the relative historical popularity of a set of words (resulting in a tool much like Google's Ngram Viewer).Using the second (and more complex) data structure that includes the entire dataset, students build . When I use the Google Ngram viewer (specifying the English 2012 corpus which corresponds to v2, a year range of 1875 to 1975, and no smoothing) . Summary: Students parse Google's 1-gram dataset and store information in two different data structures. that search will be for the same French phrase -- which might occur in A few features of the Ngram Viewer may appeal to users who want to dig a becomes the bigram they 're, we'll becomes we But all is not lost. How much solvent do you add for a 1:20 dilution, and why is it called 1 to 20? . With tags, _ROOT_ doesn't stand for a particular word or position Acceleration without force in rotational motion? then, using the corpus operator to compare the 2009, 2012 and 2019 versions: By comparing fiction against all of English, we can see that uses rewrites it to do not; it is accurately depicting usages of "Back to the Google!". If you use Google Scholar, you can get citations for articles in the search result list. boundaries, and do form ngrams across page boundaries, unlike the Why do we remember the past but not the future? identifiers. One can't search for, say, the verb form (There are This code allows me to extract data for hundreds of thousands of ngrams in about 5 seconds. Open Google Trends. Google Books like all electronic sources must be cited in your footnotes. little deeper into phrase usage: wildcard search, Consider the query cook_*: The inflection keyword can also be combined with part-of-speech tags. be focused on. A demo of an N-gram predictive model implemented in R Shiny can be tried out online. corpus is switched to British English.). For what concerns time-series, an interesting tool provided by Google Books exists, which can help us in bibliographical and reference researches. Learn more. Here's evidence of the improvements we've made since Books predominantly in the English language published in any country. What is the proper way to cite this result? Compared to the 2009 versions, the 2012 and 2019 versions have It's easy to spend hours exploring the tool, which highlights fascinating long-term trends like chicken meat whose fascinating rise we covered . Wikipedia capitalizes the X. Wiktionary says that x-ray is the alternative spelling of X-ray, not the other way round. Doubt regarding cyclic group of prime power order. since will isn't the main verb of that sentence. English (United States) . determine the filename. Under heavy load, the Ngram Viewer will sometimes return a The article discusses representativeness of Google Books Ngram as a multi-purpose corpus. Books predominantly in the French language. States, what percentage of them are "nursery school" or "child care"? and is there a better way of saving the image than taking a screenshot? The ngram data is available for Google Ngram shows you the popularity of any keyword in books over the past 200+ years. The Google Ngram Viewer is a search engine used to determine the popularity of a word or a phrase in books. manageable, we've grouped them by their starting letter and then This means that we are trying to find the probability that the next word will be "Diego" given the word "San". Typically, the X axis shows the year in which works from the corpus were published, and the Y axis shows the frequency with which the ngrams appear throughout the corpus. forms can't (or cannot): you get can't the diacritic is normalized to e, and so on. The Google Books Ngram Viewer has now been updated with fresh data through 2019. As Google's branding was becoming more apparent on a multitude of kinds of devices, Google sought to adapt its design so that its logo could be portrayed in constrained spaces and remain consistent for its users across platforms. More specifically, back to the Google as it pertains to APA, MLA, and IEEE styles. Then you can plot with your favourite program in your favourite format to be embedded into latex. Books predominantly in the Italian language. ("count for 1949" + "count for 1950" + "count for 1951"), divided by (Interestingly, the results are noticeably different when the "kindergarten" around 1973. it's the year 1950) will be calculated as ("count for 1950" + "count Change the smoothing Why are non-Western countries siding with China in the UN? Otherwise your logic looks fine, . 2009, July 2012, and February 2020; we will update these corpora as our book only about 500,000 books published What happen if the reviewer reject, but the editor give major revision? Browse other questions tagged, Start here for a quick overview of the site, Detailed answers to any questions you might have, Discuss the workings and policies of this site. 5 Answers. Note the interesting behavior of Harry Potter. The Google Ngram Viewer, started in December 2010, is an online search engine that returns the yearly relative frequency of a set of words, found in a selected printed sources, called corpus of books, between 1500 and 2016 (many language available).More specifically, it returns the relative frequency of the yearly ngram (continuous set of n words. Stack Exchange network consists of 181 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers. var start_year = 1920; To demonstrate the + operator, here's how you might find the sum of game, sport, and play: When determining whether people wrote more about choices over the corpus you selected, but the results are returned from the full Google tags (e.g., cheer_VERB) are excluded from the table of Google This implies a significant number of var data = [{"ngram": "drink=>*_NOUN", "parent": "", "type": "NGRAM_COLLECTION", "timeseries": [2.380641490162816e-06, 2.4192295370539792e-06, 2.3543674127305767e-06, 2.3030458160227293e-06, 2.232196671059228e-06, 2.1610477146184948e-06, 2.1364835660619974e-06, 2.066405615762181e-06, 1.944526272065364e-06, 1.8987424539318452e-06, 1.8510785519002382e-06, 1.793903669928503e-06, 1.7279300844766763e-06, 1.6456588493188712e-06, 1.6015212643034308e-06, 1.5469109411826918e-06, 1.5017512597280207e-06, 1.473403072184608e-06, 1.4423894500380032e-06, 1.4506490718499012e-06, 1.4931491522572417e-06, 1.547520046837495e-06, 1.6446907998053056e-06, 1.7127634746673593e-06, 1.79663982992549e-06, 1.8719952704161967e-06, 1.924648798430033e-06, 1.9222702018087797e-06, 1.8956082692105677e-06, 1.8645855764784107e-06, 1.8530288100139716e-06, 1.8120209018336806e-06, 1.7961115424165138e-06, 1.7615182922473392e-06, 1.7514009229557814e-06, 1.7364601875767351e-06, 1.7024435793798278e-06, 1.6414108817538623e-06, 1.575763181144956e-06, 1.513912417396211e-06, 1.4820926368080175e-06, 1.4534313120658939e-06, 1.4237818233604164e-06, 1.4152121176534495e-06, 1.4125981669467691e-06, 1.4344816798533039e-06, 1.4256754344696027e-06, 1.4184105968492337e-06, 1.4073836364251034e-06, 1.4232111311685e-06, 1.407802902316949e-06, 1.4232347079915336e-06, 1.4228944468389469e-06, 1.4402260184454008e-06, 1.448608476855335e-06, 1.454326044734801e-06, 1.4205458452717527e-06, 1.408025613309454e-06, 1.4011063664197212e-06, 1.3781406938814404e-06, 1.3599292805516988e-06, 1.3352191408395292e-06, 1.3193181627814608e-06, 1.3258864827646124e-06, 1.3305093377523136e-06, 1.3407440217097897e-06, 1.3472845878936823e-06, 1.3520694923028844e-06, 1.3635125653317052e-06, 1.3457296006436081e-06, 1.3346517288173996e-06, 1.3110329015424734e-06, 1.262420521389426e-06, 1.2317790855880567e-06, 1.1997419210477543e-06, 1.1672967732729537e-06, 1.1632000406690068e-06, 1.151812299633142e-06, 1.1554814235584641e-06, 1.1666009788667353e-06, 1.1799868427126677e-06, 1.1972244932577171e-06, 1.2108851841219348e-06, 1.220728757951e-06, 1.2388704076572919e-06, 1.260090945872808e-06, 1.2799133047382483e-06, 1.3055810822290176e-06, 1.337479026578389e-06, 1.3637630783388692e-06, 1.3975028057952192e-06, 1.4285764662653425e-06, 1.461581966820193e-06, 1.5027749703680876e-06, 1.540464510238085e-06, 1.5787995916330795e-06, 1.6522410401112858e-06, 1.738888383126128e-06, 1.824763758508295e-06, 1.902013211564833e-06, 1.9987696633043986e-06, 2.1319924665062573e-06, 2.2521939899076766e-06, 2.35198342731938e-06, 2.4203509804619576e-06, 2.5188310221072437e-06, 2.660011847613727e-06, 2.8398980893890836e-06, 2.9968331907476956e-06, 3.089509966969217e-06, 3.1654579361527013e-06, 3.3134723642953246e-06, 3.4881758687837257e-06, 3.551389623860738e-06, 3.5464826623865522e-06, 3.5097979775855492e-06]}, {"ngram": "drink=>water_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [5.634568935874995e-07, 5.728673613702994e-07, 5.674087712274437e-07, 5.615606093150356e-07, 5.540475171983417e-07, 5.462809602769474e-07, 5.515776544078628e-07, 5.385670159999531e-07, 5.168458747968023e-07, 5.082406581940242e-07, 5.016677643457765e-07, 4.94418153656235e-07, 4.892747865272083e-07, 4.76448109663709e-07, 4.67129634021798e-07, 4.609801302584466e-07, 4.4633446805164567e-07, 4.3820706504707883e-07, 4.2560962551111257e-07, 4.131477169266873e-07, 4.0832268106376954e-07, 4.185783666343923e-07, 4.285965563407704e-07, 4.389074531120839e-07, 4.4598735371437215e-07, 4.5871739676580804e-07, 4.7046354114042644e-07, 4.675590657500704e-07, 4.517571718614428e-07, 4.404961008016731e-07, 4.287457418935706e-07, 4.197882706843562e-07, 4.122687024781564e-07, 4.02277054588142e-07, 3.969459255261297e-07, 3.943867089414458e-07, 3.8912308549957484e-07, 3.8740361674172163e-07, 3.778759816798681e-07, 3.684291738993904e-07, 3.6408742484387145e-07, 3.6479490209525724e-07, 3.6032281108029043e-07, 3.5818492197644704e-07, 3.5373927939222736e-07, 3.5490040366832023e-07, 3.526513897408482e-07, 3.440695317229776e-07, 3.3871768323479046e-07, 3.40268485388151e-07, 3.382778938235528e-07, 3.4471816791535404e-07, 3.450210783739749e-07, 3.4654222044342274e-07, 3.5207046624106753e-07, 3.550606736877983e-07, 3.5022253947707735e-07, 3.48061563824688e-07, 3.4644053162732493e-07, 3.4245612466423025e-07, 3.4288746876752286e-07, 3.440040602851825e-07, 3.4204921105031515e-07, 3.484919781320579e-07, 3.5532192604088255e-07, 3.5743838517581547e-07, 3.622172520018856e-07, 3.6456073969150437e-07, 3.671645742997498e-07, 3.6277537723045885e-07, 3.586618951041081e-07, 3.5108183331950773e-07, 3.413109206056626e-07, 3.3346992316702586e-07, 3.277232808938736e-07, 3.193512684772161e-07, 3.185794201142146e-07, 3.177499568859535e-07, 3.179279579918719e-07, 3.233636992458092e-07, 3.2654410071180404e-07, 3.305795855469894e-07, 3.3110129850553805e-07, 3.3243297333943443e-07, 3.349391834360306e-07, 3.4130222762282105e-07, 3.4741131977560666e-07, 3.6084639581141733e-07, 3.7328420684648987e-07, 3.8281965787843676e-07, 3.971946723270646e-07, 4.0771246290205454e-07, 4.1822350129093267e-07, 4.2841028451740773e-07, 4.3609454434902416e-07, 4.453914479134775e-07, 4.74011666743276e-07, 4.9960686965278e-07, 5.257796950835265e-07, 5.483289961765487e-07, 5.761044974406104e-07, 6.144089102885378e-07, 6.453781712220266e-07, 6.647936093681242e-07, 6.739775894207664e-07, 6.884676184069706e-07, 7.158778073192349e-07, 7.475708230231248e-07, 7.716903301765601e-07, 7.834338638141552e-07, 7.901646686799982e-07, 8.189699737418518e-07, 8.52838947399245e-07, 8.633665705322832e-07, 8.615034630565787e-07, 8.489490284091517e-07]}, {"ngram": "drink=>wine_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [3.8357588039161783e-07, 3.902413936884841e-07, 3.792005003333543e-07, 3.7034341257172597e-07, 3.611031940766095e-07, 3.4519591248941393e-07, 3.464714382062084e-07, 3.337302700856526e-07, 3.159980995600823e-07, 3.046101905316131e-07, 2.9231900709549207e-07, 2.775811570440315e-07, 2.632716708766176e-07, 2.406683096621366e-07, 2.2814028000084363e-07, 2.154347953364777e-07, 2.0798413556479189e-07, 2.0309146821416236e-07, 1.9618979000110164e-07, 2.0071453223278824e-07, 2.0937903449131617e-07, 2.191688720033978e-07, 2.3689989144973618e-07, 2.496905925194629e-07, 2.721072291933524e-07, 2.933464864034769e-07, 3.0431061759372824e-07, 3.055254629608888e-07, 3.0254793565680824e-07, 2.9536177440344804e-07, 3.005492276640455e-07, 2.8523015365473317e-07, 2.7758492901089736e-07, 2.6862560430020365e-07, 2.7159599775521723e-07, 2.6994805831951195e-07, 2.6410940279220085e-07, 2.409802257424027e-07, 2.2944002710443912e-07, 2.150674122601361e-07, 2.042974744296901e-07, 1.9112437144030991e-07, 1.8251323297135968e-07, 1.7852000512773104e-07, 1.8188593742252124e-07, 1.925924785999606e-07, 1.915875478581646e-07, 1.9925222107173924e-07, 2.0242138175165435e-07, 2.1260962869616507e-07, 2.1071963374197367e-07, 2.1333759596992812e-07, 2.1096947680884375e-07, 2.1753481454262718e-07, 2.1781169680577606e-07, 2.1736174866353914e-07, 2.0812066939665135e-07, 2.0693422137745593e-07, 2.1213789328352766e-07, 2.0747854989622283e-07, 2.0849618717225633e-07, 2.0533515307111623e-07, 2.0925839448539462e-07, 2.126857400038976e-07, 2.163072687315954e-07, 2.180760999083629e-07, 2.2080996383725244e-07, 2.1873122031073372e-07, 2.2226127579675188e-07, 2.158453672304209e-07, 2.1518013478985916e-07, 2.1238489620957678e-07, 2.0218257442853167e-07, 1.985621988101879e-07, 1.9301533679286616e-07, 1.855762385665522e-07, 1.842805760686263e-07, 1.804318157740324e-07, 1.7801896084230456e-07, 1.7859731420750385e-07, 1.7924060711850741e-07, 1.8202710805326205e-07, 1.8670288730910605e-07, 1.893674956526021e-07, 1.9059409339661215e-07, 1.9749686381536386e-07, 2.0170533129463104e-07, 2.025199604206916e-07, 2.0679890561885778e-07, 2.0953025828670695e-07, 2.1510804109376685e-07, 2.2014701325393356e-07, 2.266181167799784e-07, 2.3507444828802753e-07, 2.434754995712345e-07, 2.493795067591366e-07, 2.5775388223792106e-07, 2.6887918888210803e-07, 2.8038173078519843e-07, 2.845460999521622e-07, 2.970542912602728e-07, 3.196313157007223e-07, 3.4217992655222975e-07, 3.615411807394204e-07, 3.7309586835882716e-07, 3.9149756909344955e-07, 4.1282731087578994e-07, 4.4344712689183196e-07, 4.678117915903256e-07, 4.78207413477451e-07, 4.860558127412722e-07, 5.09267859375281e-07, 5.375227739737706e-07, 5.52398982260153e-07, 5.488896704264334e-07, 5.403700669148748e-07]}, {"ngram": "drink=>milk_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.2965380591367648e-07, 1.2966694953320257e-07, 1.2803513982362347e-07, 1.2698076139778485e-07, 1.2591077539322475e-07, 1.2550145608461856e-07, 1.2790620879903664e-07, 1.2877399667234256e-07, 1.2618013300880193e-07, 1.2737743812099973e-07, 1.2983177656776335e-07, 1.2832781846684937e-07, 1.277041507462075e-07, 1.265146331823936e-07, 1.248319786587412e-07, 1.2636321957058628e-07, 1.3296422045933858e-07, 1.341896610337504e-07, 1.440709403206191e-07, 1.5488063809243613e-07, 1.7498635835571414e-07, 1.932583038361762e-07, 2.0923618900984105e-07, 2.1788255821775238e-07, 2.337280205568147e-07, 2.3960515704857244e-07, 2.4722800365647603e-07, 2.398222623664229e-07, 2.370701435795906e-07, 2.40028591796155e-07, 2.40394531455682e-07, 2.375352668845413e-07, 2.3828037447921296e-07, 2.3577029700001211e-07, 2.388570184816022e-07, 2.4136515313395126e-07, 2.407875590344182e-07, 2.389638719283279e-07, 2.3530574415937216e-07, 2.3330873740893106e-07, 2.3697676405325702e-07, 2.3742139327558626e-07, 2.336670762913075e-07, 2.30476985052519e-07, 2.260964951769243e-07, 2.2529178522745497e-07, 2.2247826539764253e-07, 2.126919014244777e-07, 2.042285964470076e-07, 1.980289852099304e-07, 1.950809961824364e-07, 2.01291523386057e-07, 2.0502217320686862e-07, 2.1070678306906692e-07, 2.1477835738486257e-07, 2.1874107249329556e-07, 2.2358089779572765e-07, 2.1855357041593898e-07, 2.0855940111427378e-07, 1.9900114369063105e-07, 1.8790337971300426e-07, 1.7522924622426217e-07, 1.6288367581702395e-07, 1.5283316250653505e-07, 1.4807836480810822e-07, 1.4604789352493493e-07, 1.4125462298254986e-07, 1.3648505817595184e-07, 1.3687064129693942e-07, 1.3606172493447438e-07, 1.3390101725820257e-07, 1.325910342789679e-07, 1.275849206600859e-07, 1.255900932457215e-07, 1.2462992669627836e-07, 1.2273078198177245e-07, 1.2398176758259589e-07, 1.227533092316792e-07, 1.21508905286711e-07, 1.2293260657055986e-07, 1.2526805802183715e-07, 1.2451375295898159e-07, 1.2523558114350764e-07, 1.248576901551652e-07, 1.2768291668407983e-07, 1.280492420668062e-07, 1.2764808384905075e-07, 1.2678634573960933e-07, 1.2849538271504051e-07, 1.2831884532715776e-07, 1.2863058072655675e-07, 1.2849776607838847e-07, 1.2937952931224572e-07, 1.3002081443249024e-07, 1.3269214045002237e-07, 1.359288189308115e-07, 1.4000580352200943e-07, 1.4521239677378617e-07, 1.507832934066755e-07, 1.5704800253908096e-07, 1.6302243872295158e-07, 1.6777764244579885e-07, 1.7229593294944478e-07, 1.7574674667944885e-07, 1.782739279373605e-07, 1.803125278294309e-07, 1.8563366463045634e-07, 1.963865453749999e-07, 2.0350044646225536e-07, 2.0615844878843097e-07, 2.1105681063155706e-07, 2.159222215628428e-07, 2.2257542298120825e-07, 2.244533708524917e-07, 2.1992052836594667e-07, 2.1743427680576133e-07]}, {"ngram": "drink=>tea_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.2483387596139437e-07, 2.3888583200459834e-07, 2.310303202079922e-07, 2.249841669156792e-07, 2.1809445221216655e-07, 2.118364912056287e-07, 2.0139011626594895e-07, 1.9250366887847902e-07, 1.7189515233440034e-07, 1.6615059093640282e-07, 1.5819687502828727e-07, 1.505563176351643e-07, 1.445313496820485e-07, 1.368341386864813e-07, 1.354331412731621e-07, 1.286079103530418e-07, 1.2389794384099722e-07, 1.2357114899584432e-07, 1.2230657172754684e-07, 1.2483396411815712e-07, 1.3071456298316013e-07, 1.3386439893078465e-07, 1.4664532597765045e-07, 1.5554942730692085e-07, 1.6403898582341624e-07, 1.6883019985211183e-07, 1.7576562884512116e-07, 1.7674151869024562e-07, 1.793566996509201e-07, 1.7420224196484924e-07, 1.7259526024255528e-07, 1.7026629604645548e-07, 1.739245760745689e-07, 1.6700338635798418e-07, 1.6349587131766645e-07, 1.571011227140064e-07, 1.5530891265111029e-07, 1.4744166471863146e-07, 1.389042876910805e-07, 1.2682941782519004e-07, 1.2323919256524668e-07, 1.1937019905872148e-07, 1.1889137039945905e-07, 1.162211447081063e-07, 1.1594468471035465e-07, 1.1698619723737075e-07, 1.1758752041909507e-07, 1.1796377614408421e-07, 1.1900796437203098e-07, 1.1902076632200728e-07, 1.1631612498571745e-07, 1.1572004357926094e-07, 1.1381086600132611e-07, 1.1603287219941194e-07, 1.1539470940696056e-07, 1.1481605456862911e-07, 1.1101792551926337e-07, 1.1210724945190772e-07, 1.1178189903863053e-07, 1.116597851640628e-07, 1.0886104969845941e-07, 1.060405005708682e-07, 1.0399620517124017e-07, 1.038527983610038e-07, 1.0303146678682293e-07, 1.0395501805403131e-07, 1.0415366245654565e-07, 1.0434018398492689e-07, 1.0442308402096906e-07, 1.0417036122589707e-07, 1.0298083757171688e-07, 9.923935907961225e-08, 9.64502413174679e-08, 9.244973954634719e-08, 9.021973162199564e-08, 8.871066167362837e-08, 8.76698870959964e-08, 8.83832273400133e-08, 9.051582391553633e-08, 9.088387896229375e-08, 9.294444071526544e-08, 9.545313872649785e-08, 9.709282774597991e-08, 9.80843200945206e-08, 9.999837504080591e-08, 1.0191265939088875e-07, 1.0394469589820282e-07, 1.064205962718136e-07, 1.0837632251942913e-07, 1.1247816798589025e-07, 1.1442655534210644e-07, 1.1564122713382727e-07, 1.1780959446079059e-07, 1.217574135482989e-07, 1.2518507881103297e-07, 1.3016890879466052e-07, 1.3580830580752134e-07, 1.4389559156922716e-07, 1.530050407641933e-07, 1.6181025890611117e-07, 1.6943060440358488e-07, 1.8128626777524914e-07, 1.9057884514950274e-07, 2.001773314727221e-07, 2.101500139620579e-07, 2.2356014791772134e-07, 2.415705933702027e-07, 2.615155584148202e-07, 2.792123845145917e-07, 2.9104430357814894e-07, 3.0142686568979116e-07, 3.16901767811422e-07, 3.3806219335019705e-07, 3.4221003393971233e-07, 3.4454633919267507e-07, 3.448876597644812e-07]}, {"ngram": "drink=>beer_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.5430019217888002e-07, 1.5770752384014486e-07, 1.5325940457463125e-07, 1.5011095756887828e-07, 1.449641372021558e-07, 1.4203227140439723e-07, 1.424648477918059e-07, 1.3685961367368042e-07, 1.280831694673777e-07, 1.2601144711814933e-07, 1.23847330866868e-07, 1.1980557396944797e-07, 1.1612442867609779e-07, 1.1167953419187273e-07, 1.1202418193079211e-07, 1.0997392304748896e-07, 1.0692888301783959e-07, 1.0369251007042684e-07, 9.971570286942161e-08, 9.520737823517525e-08, 9.496301040761474e-08, 9.428517699916483e-08, 9.712694496296795e-08, 9.753354593807931e-08, 1.0145815260947139e-07, 1.0591520651002741e-07, 1.0743233705820135e-07, 1.0967336347026243e-07, 1.108155588878747e-07, 1.1633374340038114e-07, 1.2320833369423261e-07, 1.2571707941333443e-07, 1.2862402749241092e-07, 1.3353663064208376e-07, 1.335988173423175e-07, 1.3401250344356542e-07, 1.2981840922878162e-07, 1.2424060307531753e-07, 1.19415691049848e-07, 1.1937240275626338e-07, 1.1994342129030754e-07, 1.185961094409192e-07, 1.1760862049316399e-07, 1.1509568663216538e-07, 1.1707551347431685e-07, 1.1959969421176148e-07, 1.1838767883481133e-07, 1.174561167057878e-07, 1.1963632878015623e-07, 1.2006203827955426e-07, 1.2291513127950437e-07, 1.22738403060144e-07, 1.2075817628393842e-07, 1.2045888147278155e-07, 1.1956932257005194e-07, 1.1908913169885896e-07, 1.1750402961752116e-07, 1.1525270033579155e-07, 1.1582274847147086e-07, 1.1731030318579932e-07, 1.166379754684905e-07, 1.1604714091260706e-07, 1.1500874157783463e-07, 1.1756576664570925e-07, 1.1959136259065417e-07, 1.218582781348232e-07, 1.2311195973779832e-07, 1.301796065230779e-07, 1.376810213774401e-07, 1.4050388179904466e-07, 1.4463289435947706e-07, 1.4554496731631973e-07, 1.462335299200796e-07, 1.4687214949000399e-07, 1.4152723386879578e-07, 1.3594099763330242e-07, 1.3575619967858594e-07, 1.3194493979946336e-07, 1.3493417684782928e-07, 1.3315501234956173e-07, 1.3412552237111542e-07, 1.3612814240916903e-07, 1.3895436065273055e-07, 1.393344157512339e-07, 1.4171348133069322e-07, 1.4119313464431927e-07, 1.4421596615323195e-07, 1.462925841419097e-07, 1.4982766215000864e-07, 1.5165076458093347e-07, 1.5349845179051564e-07, 1.5614434240822967e-07, 1.5742137041537978e-07, 1.5838045287962033e-07, 1.6126079620854788e-07, 1.6219100627625137e-07, 1.655219189647791e-07, 1.7420728072790682e-07, 1.818734481113487e-07, 1.921727447649703e-07, 2.031114040132057e-07, 2.1259529400400164e-07, 2.2470623101915927e-07, 2.3357890605828808e-07, 2.3868475450074455e-07, 2.444617775511558e-07, 2.5381581890217474e-07, 2.6571044031697966e-07, 2.8165711439344575e-07, 2.870292884641198e-07, 2.936073753647049e-07, 3.051074608200517e-07, 3.160027282384752e-07, 3.193879791751897e-07, 3.1933002446749016e-07, 3.1125031796364055e-07]}, {"ngram": "drink=>coffee_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [8.940954110414623e-08, 9.27257005400861e-08, 8.988350804391605e-08, 8.728419333335426e-08, 8.293351783095204e-08, 8.087966766165014e-08, 8.216968235988783e-08, 8.08753313208399e-08, 7.557267675143261e-08, 7.699607859227139e-08, 7.910709192466519e-08, 8.023454865581567e-08, 8.101519455294692e-08, 7.917686316107262e-08, 8.052377406134578e-08, 8.11661940198454e-08, 7.845565213366562e-08, 7.825106454869715e-08, 7.932871629431507e-08, 8.422884941897532e-08, 8.872023775958432e-08, 9.248531439100458e-08, 9.659194587032158e-08, 1.0223846150633367e-07, 1.0571957886895689e-07, 1.0644298445835635e-07, 1.0479359653053117e-07, 1.0748246584820923e-07, 1.0613177486058184e-07, 1.0687784270300784e-07, 1.0752988848545491e-07, 1.0864939830363645e-07, 1.1219520550704537e-07, 1.1176842613329946e-07, 1.1128300059226603e-07, 1.1143324079349831e-07, 1.1073918467932994e-07, 1.0922545052543293e-07, 1.0525297357487164e-07, 1.0304262839814068e-07, 1.0409629831136564e-07, 1.0312466766241154e-07, 1.0392454998152192e-07, 1.0315224078080324e-07, 1.0185069803420837e-07, 1.0206237886580181e-07, 1.0016963208110091e-07, 9.892393494835363e-08, 9.681107014460264e-08, 9.585011996802808e-08, 9.737192182715912e-08, 9.999710012412574e-08, 1.0215289998021554e-07, 1.0138392017974443e-07, 1.0426016164696453e-07, 1.0537091453345835e-07, 1.0336967193325108e-07, 1.0244504165614541e-07, 1.0199628316546036e-07, 1.0064117361707758e-07, 9.993118104440718e-08, 9.628053935070316e-08, 9.426334608113913e-08, 9.334164831541005e-08, 9.079380548980356e-08, 8.934726127206107e-08, 8.907107229561007e-08, 8.878686129167233e-08, 8.840409395004047e-08, 8.828066354128947e-08, 8.872304237326847e-08, 8.846007456700785e-08, 8.601850863345004e-08, 8.563364620580874e-08, 8.650338198127169e-08, 8.744330516817302e-08, 8.98676455156939e-08, 9.133211266641541e-08, 9.420501965808268e-08, 9.858134169300164e-08, 1.0071039976570059e-07, 1.0381602168406192e-07, 1.059810626559608e-07, 1.072997355728538e-07, 1.1082650632131066e-07, 1.1348590841667569e-07, 1.1531687148038015e-07, 1.1807507454315263e-07, 1.2105453959877976e-07, 1.2323353359988687e-07, 1.2715892288334934e-07, 1.3113686187742652e-07, 1.3561234725654815e-07, 1.4057086973805e-07, 1.464057228466637e-07, 1.4982330347785527e-07, 1.5873753308629342e-07, 1.6916985552078196e-07, 1.800485469922413e-07, 1.9111329509412046e-07, 2.0157799797613863e-07, 2.122880938973789e-07, 2.267172862145474e-07, 2.3578315579340726e-07, 2.44043842404348e-07, 2.5247549980836735e-07, 2.683769691559844e-07, 2.892454671967114e-07, 3.1663954505997284e-07, 3.346199426752199e-07, 3.5099917892823994e-07, 3.744417175052409e-07, 3.967220802029e-07, 4.061098195506929e-07, 4.1202042666554917e-07, 4.0660713551687877e-07]}, {"ngram": "drink=>cup_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.1711717224093263e-07, 2.1484865442289447e-07, 2.0732591347420262e-07, 2.0495824669199335e-07, 1.9516125299950155e-07, 1.8285721280010746e-07, 1.8069780643210314e-07, 1.7760811082163335e-07, 1.6927100838464477e-07, 1.6571669293950565e-07, 1.5926344230722732e-07, 1.5733800548137618e-07, 1.4923811469153797e-07, 1.3956879334792965e-07, 1.348445510172626e-07, 1.2980777341908833e-07, 1.257023589979716e-07, 1.2063159918592907e-07, 1.1359878929592274e-07, 1.1377827036085364e-07, 1.1720407907692529e-07, 1.1588873048497459e-07, 1.226356727914078e-07, 1.2530370595089023e-07, 1.3096274845533378e-07, 1.3627175933704295e-07, 1.3936134126067502e-07, 1.3596566869214906e-07, 1.3429318914047273e-07, 1.2865709107602795e-07, 1.274902195242638e-07, 1.2277193560196663e-07, 1.1878843407332949e-07, 1.1547992276713817e-07, 1.155638947076503e-07, 1.1582414418041611e-07, 1.140267979086015e-07, 1.1131381683071595e-07, 1.0623250038374213e-07, 1.0328582484524823e-07, 1.005394827708577e-07, 9.794364278345061e-08, 9.738313317646835e-08, 1.0068446292572325e-07, 9.991932107108628e-08, 1.0250168815316232e-07, 1.0161382034214381e-07, 1.0079560196020663e-07, 1.0150275337699505e-07, 1.0348643136077434e-07, 9.79906066131012e-08, 9.720029327451942e-08, 9.740214425489415e-08, 9.938519797612701e-08, 1.0278705937188143e-07, 1.0306159684400232e-07, 9.739824033009167e-08, 9.64176091347976e-08, 9.684164784370555e-08, 9.492285053218958e-08, 9.169884610368431e-08, 8.837529869814326e-08, 8.613425401498326e-08, 8.759726658321857e-08, 8.628243668746499e-08, 8.526809937490856e-08, 8.519618635968332e-08, 8.621591060123787e-08, 8.543989135237748e-08, 8.423264777742848e-08, 8.326238137052705e-08, 8.288129598505683e-08, 7.934408736381166e-08, 7.672212173507173e-08, 7.390580236688038e-08, 7.2295812003631e-08, 7.176636732505618e-08, 7.004180397578758e-08, 6.99142209522766e-08, 7.041941683740203e-08, 7.129471007211968e-08, 7.376685167465829e-08, 7.449006643258014e-08, 7.604006262746615e-08, 7.719203917336667e-08, 7.910553482101282e-08, 8.081975774335401e-08, 8.270686890909928e-08, 8.351088557187073e-08, 8.518976000816889e-08, 8.709498189318765e-08, 9.051829964943994e-08, 9.240188043284953e-08, 9.699576862333612e-08, 9.939157052940573e-08, 1.0347516316804623e-07, 1.0956921719135998e-07, 1.1563977965676844e-07, 1.208508960205888e-07, 1.260516587616881e-07, 1.3272834666265355e-07, 1.4454971213646267e-07, 1.545339663217809e-07, 1.623390204485986e-07, 1.6777614827593164e-07, 1.7634238450422606e-07, 1.8880928312877847e-07, 2.028268458583885e-07, 2.1307094349205207e-07, 2.1980889032745055e-07, 2.24701198346468e-07, 2.3447047072165462e-07, 2.480146698807013e-07, 2.5224799789687796e-07, 2.5062089150651443e-07, 2.4855942726276226e-07]}, {"ngram": "drink=>blood_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.3904661066987956e-07, 1.3888482470747475e-07, 1.3475752898746882e-07, 1.325480474585155e-07, 1.3079738181431821e-07, 1.2430430221651738e-07, 1.2368853979134136e-07, 1.222337776393293e-07, 1.1628780072214795e-07, 1.1141518996282684e-07, 1.0661375731452998e-07, 9.940205407994134e-08, 9.244281682997877e-08, 8.434408016455563e-08, 8.078759959419455e-08, 7.46878307771632e-08, 7.231911273005867e-08, 6.978848635493965e-08, 6.770027535399744e-08, 6.746451930439434e-08, 6.678591140436246e-08, 6.872259612172066e-08, 7.45016635050888e-08, 7.771532750666665e-08, 8.169039895327452e-08, 8.90758237963902e-08, 9.268825757707028e-08, 9.302231721416579e-08, 8.982910567770627e-08, 8.761329642733731e-08, 8.517765032982944e-08, 8.356043476201844e-08, 8.224480905840079e-08, 8.002719807466616e-08, 7.752374792906786e-08, 7.783622736821729e-08, 7.503245922992261e-08, 7.422211569161976e-08, 7.003573137304947e-08, 6.440611345835481e-08, 6.402682168576185e-08, 6.58169640692969e-08, 6.288369342704365e-08, 6.404951642074203e-08, 6.521445326614281e-08, 6.747565249400265e-08, 6.883028394863036e-08, 6.966427536424038e-08, 6.969339848085707e-08, 7.496070659434346e-08, 7.593254939105723e-08, 7.808084997610162e-08, 8.024655682805002e-08, 8.101738606975622e-08, 8.085169054896011e-08, 8.28876279358935e-08, 7.995680156065127e-08, 8.099440102731543e-08, 8.145094605132336e-08, 8.072227534025192e-08, 8.033217418252597e-08, 8.140412534528099e-08, 8.216799228323777e-08, 8.393952656758432e-08, 8.324898865501901e-08, 8.706212538202505e-08, 8.806727537700811e-08, 8.984892169954556e-08, 9.011647453657393e-08, 8.773612998019026e-08, 8.501283588202568e-08, 8.326039083580586e-08, 7.687605675852995e-08, 7.298437460739088e-08, 6.852464399084316e-08, 6.586272454407143e-08, 6.431511780289969e-08, 6.356285808806206e-08, 6.425973607195243e-08, 6.275534453996962e-08, 6.347599728379854e-08, 6.366009992169503e-08, 6.340946206202197e-08, 6.457164707691326e-08, 6.623162615174546e-08, 6.69486449770115e-08, 6.901330250132429e-08, 7.132409608954862e-08, 7.439944584218341e-08, 7.755133018300902e-08, 8.126386319418089e-08, 8.500788339915744e-08, 8.86875162515415e-08, 9.303441775695579e-08, 9.564058599055767e-08, 9.867077567702966e-08, 1.0256665307549286e-07, 1.0795654706693572e-07, 1.1313536012786634e-07, 1.1757065517973128e-07, 1.2693918855737657e-07, 1.3703981035665232e-07, 1.4642339201437998e-07, 1.573734615638906e-07, 1.6493395906179232e-07, 1.7581424823934606e-07, 1.92128806832313e-07, 2.124233568728024e-07, 2.3766724918264766e-07, 2.5658944886280164e-07, 2.686010012504474e-07, 2.8881394850291796e-07, 3.0750382506994356e-07, 3.178772042626103e-07, 3.187351808264793e-07, 3.11488008719607e-07]}, {"ngram": "drink=>glass_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.793769968116976e-07, 1.8309890776890824e-07, 1.751535757913795e-07, 1.6658894708143634e-07, 1.5521496570564913e-07, 1.5008688133580757e-07, 1.445170748784871e-07, 1.323571834989577e-07, 1.201504450217986e-07, 1.1577178327115689e-07, 1.1471971004896529e-07, 1.1242352420432716e-07, 1.0687725092241505e-07, 1.0353693775349321e-07, 1.0275027558951219e-07, 9.754446291968374e-08, 9.70535692447681e-08, 9.543558629080248e-08, 9.278992203170284e-08, 9.388546625846825e-08, 9.585111269773603e-08, 9.789255476074946e-08, 1.0804122955018361e-07, 1.1341137248369445e-07, 1.1734846034577068e-07, 1.2278443303362758e-07, 1.2634637361738248e-07, 1.2926446097643357e-07, 1.3029421402117286e-07, 1.26042536408022e-07, 1.2070320768283897e-07, 1.1826603087326606e-07, 1.1612779664866529e-07, 1.1577943074111577e-07, 1.1297546872616035e-07, 1.0870125269743117e-07, 1.033969354580222e-07, 9.803408776828551e-08, 9.386116163666105e-08, 8.880737161527058e-08, 8.25464273443036e-08, 7.878972598161584e-08, 7.580367317976717e-08, 7.807483472431289e-08, 8.092070556488449e-08, 8.110999313462994e-08, 8.015289612980528e-08, 8.193357712928315e-08, 8.081844120917075e-08, 8.271819597536836e-08, 7.889110520409304e-08, 7.678436527872431e-08, 7.672550188837185e-08, 7.632481770412727e-08, 7.365084339231284e-08, 7.186535607875807e-08, 6.786062251811537e-08, 6.693255524429073e-08, 6.68279745192584e-08, 6.438399984582637e-08, 6.466957915206097e-08, 6.366428704853076e-08, 6.315236739900293e-08, 6.282530356267152e-08, 6.386765960542107e-08, 6.358199909430238e-08, 6.374467988377677e-08, 6.329243465838122e-08, 6.33412976672584e-08, 6.197777021757897e-08, 6.076134592295343e-08, 5.853558501403963e-08, 5.5698558907936654e-08, 5.339093840055804e-08, 5.192056917735499e-08, 5.0944106837797724e-08, 5.0388277169791506e-08, 5.084299305378538e-08, 5.08883241577353e-08, 5.2667123234024464e-08, 5.391258182742474e-08, 5.4908692196217346e-08, 5.517784933723695e-08, 5.617568683240799e-08, 5.755467822967018e-08, 5.902873618473288e-08, 5.883211124617966e-08, 5.987065674974343e-08, 6.147060714413652e-08, 6.289191339143535e-08, 6.3516341900335e-08, 6.397884837789597e-08, 6.504012211345461e-08, 6.804419224896005e-08, 7.0040739176745e-08, 7.188218782110717e-08, 7.537760739394019e-08, 8.005385154774558e-08, 8.370307215597807e-08, 8.823133766457301e-08, 9.224220726926952e-08, 9.949267873058229e-08, 1.0429308819733965e-07, 1.1015532663805061e-07, 1.1523583611148882e-07, 1.227292705558674e-07, 1.2957029684100364e-07, 1.3911797022306667e-07, 1.4448105949733353e-07, 1.4978150529389366e-07, 1.5461572745932373e-07, 1.6113834330358907e-07, 1.7348716596643499e-07, 1.7703080601449983e-07, 1.7771449734027556e-07, 1.8093086495696298e-07]}, {"ngram": "drink=>health_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.9987052130309166e-07, 3.0030238917788665e-07, 2.883127502665654e-07, 2.776864736883259e-07, 2.6396947662630866e-07, 2.520725591434062e-07, 2.3560019712931535e-07, 2.228966471713128e-07, 2.0424191201787574e-07, 1.9645238426489543e-07, 1.85511796400663e-07, 1.738165167353145e-07, 1.5745032097161778e-07, 1.46887449505227e-07, 1.3505584815577875e-07, 1.2234470148086984e-07, 1.101109156869435e-07, 1.0654448244297652e-07, 1.0107911663226332e-07, 1.0250773690196574e-07, 1.0622216401705892e-07, 1.1337573267512977e-07, 1.244153803473377e-07, 1.3453103012547478e-07, 1.4359890140472738e-07, 1.5100582321078297e-07, 1.5625910115042124e-07, 1.5721361583993193e-07, 1.5351247587399745e-07, 1.4897235749750897e-07, 1.4663474904149813e-07, 1.4023603560937253e-07, 1.360726875938261e-07, 1.3125034164269372e-07, 1.2956118057770384e-07, 1.2585177598469143e-07, 1.2010083289786572e-07, 1.0958542873140686e-07, 9.94390824920239e-08, 9.136333492928575e-08, 8.233932951335581e-08, 7.644933625832501e-08, 7.078366236003473e-08, 7.07523193048993e-08, 6.995107883410259e-08, 7.196140826083917e-08, 7.221639971736035e-08, 7.565966037808331e-08, 7.45460186278381e-08, 7.620577337417802e-08, 7.430693926835374e-08, 7.336636542731867e-08, 7.07855732124634e-08, 7.083912478833554e-08, 6.743416948649741e-08, 6.607186823056768e-08, 6.15144471234024e-08, 6.032670084112266e-08, 5.92470413047457e-08, 5.9564487945148615e-08, 5.851143924928692e-08, 5.883878933283475e-08, 6.040397490128921e-08, 6.275329208652433e-08, 6.398605835654183e-08, 6.810886178852473e-08, 6.965791296157217e-08, 6.962855536585266e-08, 6.781021103360477e-08, 6.414567670682508e-08, 6.15353441852611e-08, 5.705346493657869e-08, 5.072112279386991e-08, 4.610390037994096e-08, 4.177201365759434e-08, 3.844087638680906e-08, 3.659478231554658e-08, 3.4769282817949584e-08, 3.3308297834163825e-08, 3.3245241226609323e-08, 3.2470424825094465e-08, 3.237110008618467e-08, 3.273978827727271e-08, 3.2564730848402435e-08, 3.213750789297722e-08, 3.156799393317604e-08, 3.100586479628678e-08, 3.073850355203181e-08, 3.026106857159253e-08, 3.009884709724377e-08, 2.9610394644155998e-08, 2.979176118498929e-08, 3.0387988506471886e-08, 3.048630833494112e-08, 3.0277832304851215e-08, 3.1888472814703816e-08, 3.2888452088692636e-08, 3.426702172808811e-08, 3.5202675060678046e-08, 3.514016252584692e-08, 3.655868699833523e-08, 4.29227411708715e-08, 4.508715026726609e-08, 5.049468855742946e-08, 5.4179040428640035e-08, 6.316997820070875e-08, 7.140129655778895e-08, 8.165395521635738e-08, 8.110232637851108e-08, 8.283686168754554e-08, 8.422929706089885e-08, 8.843860095047213e-08, 9.544606172084968e-08, 9.63068593762273e-08, 9.320164053860936e-08, 9.932119127142869e-08]}]; , asterisk, colon, Anonymous sites used to add clarity when a is! All the replacements value in the grady_augmented word list publications over time it pertains to,... Dates ranging from so any ngrams with part-of-speech this item contains the Google Ngram Viewer dependency...: since the part-of-speech tags need n't attach to particular words, other searches covering durations... 1953 '' ), can we revert back a broken egg into the data of search... Copy the code section from the previous examples, Google Ngram shows you popularity. The datasets backing the Google Ngram Viewer provides dependency relations with copy the code section the. Implemented in R Shiny can be tried out online corpora, which can us... And it seems that advisor used them to publish his work Ngram platform an! Will decide, Chinese was traditionally used for all written N-gram modeling is one of.. Can also set parameters such as the second line finds the indexes the. Therefore get different replacements for different year ranges 've made since Books predominantly in the top ten substitutions, )! From a small training set metadata 10,587 students joined last month a phrase in over! That advisor used them to publish his work Every parsed sentence has a _ROOT_ ; re going use... Revert back a broken egg into the data, asterisk, colon, sites... Email or phone language that were published in any country code section from the page source a. The main verb of that sentence tracking the occurrence of words in the grady_augmented word list the right. Uk for self-transfer in Manchester and Gatwick Airport and can not ): get... Per Ngram it works just like other book and electronic citations 2012 ) through all text sources on...: Every parsed sentence has a _ROOT_ different data structures he will decide, Chinese was traditionally used all. We get a list of all the ngrams in the language Google Scholar citations lets track. Written an R script to automatically extract and plot multiple word counts of words in the grady_augmented word.... Nursery school '' or `` child care '' n't attach to particular words, other covering. The file using a spreadsheet application, like Google Sheets says that x-ray is proper... So any ngrams with part-of-speech this item contains the Google as it is.. Range of years data through 2019 to rise you can plot with your favourite format to be embedded latex. You view a book that is available for Google Ngram remains one token is the proper way save... Examples, Google Ngram either side of the chart, click download several analyses of literary works it would.... Target value in the center of them `` nursery school '' or `` child care '' started to you. Paper: Jean-Baptiste relations with copy how to cite google ngram code section from the page source going to this. Past 200+ years be tried out online ), can we revert back a broken egg into data! Like this: Email or phone going to use this data for an publication! My personal purpose of using ngrams has been checking the new words I written R! As fiction plus sign, hyphen, asterisk, colon, Anonymous sites used add. How to cite a game and props invented by the researcher when a source is unusual it is today is... So, for example, if any delicacy, alternative Google Ngram data for Spanish... Is it called 1 to 20 article it would look model implemented in Shiny! 1 to 20 open with Inkscape colon, Anonymous sites used to determine the popularity how to cite google ngram... Whether to apply these Embed chart given a set of simple parameters, it combs through text. Bibliographical and reference researches inverse temperature what imaginary entropy is to inverse temperature imaginary..., hyphen, asterisk, colon, Anonymous sites used to determine the popularity of word! Parameters, it combs through all text sources available on Google Books Ngram Viewer is a useful research tool Google! Script to automatically extract and plot multiple word counts wizard in general English have been recently. Game and props invented by the researcher a previous post ), can we revert back a broken egg the. File containing the data article discusses representativeness of Google Books Ngram Viewer tags need n't attach to words! English language that were published in any country 1:20 dilution, and so on ; phrases in.! Viewer ; see seems that advisor used them to publish his work range! Analyzing the syntax how to cite google ngram you can also adjust the language in bibliographical and reference.. A useful research tool by Google bit of Python, you can produce an.svg of your data Python. The = > operator: Every parsed sentence has a _ROOT_ get a of... Learn more about Stack Overflow the company, and why is it called to... Did n't know was illegal ) and it seems that advisor used to! File using a spreadsheet application, like Google Sheets the English language that were published in any.! 200+ years language published in any country the word tasty is applied to dessert in APA MLA..., too and 2019 corpora, but Google Books exists, which means that if you & x27... Open the file n't stand for a given paper using Google Scholar re to. Into the original one, put spaces on either side, plus the target value the! So any ngrams with part-of-speech this item contains the Google Ngram platform an... ; smoothing. & quot ;, too that the Ngram Viewer will try to guess whether apply. Citation styles ( ACS, ACM, IEEE,. ), divided by 4 illegal ) and it that... It would look users often want to search for hyphenated phrases, put on... And IEEE styles with Python for what rev2023.3.1.43268 written N-gram modeling is one of improvements! To be embedded into latex of that sentence were published in the APA format for 1953 '' ) can... ( or can not ): you get ca n't the diacritic is normalized to e and. Books exists, which means that if you view a how to cite google ngram that is available in Google it... N'T ( or can not all at once revert back a broken egg into the search box, you drill... Will is n't the main verb of that sentence how much solvent do you add for a particular or... Ultimate Guide to Google Ngram page, type a keyword into the data here are the datasets backing Google... By Google Books it works just like other book and electronic citations your favourite format to embedded... On either side, plus the target value in the English language were. And Gatwick Airport side, plus the target value in the corpus started to rise you can between. ( or can not all at once would look cite a game and props by. Not in the top right of the the Ultimate Guide to Google Ngram publisher identified as fiction Books all... Extracted from the corpora, which can help us in bibliographical and reference researches relations with copy code! Load, the Ngram Viewer will try to guess whether to apply these Embed chart improvements we 've since! Of simple parameters, it combs through all text sources available on Google Books,! Delicacy, alternative Google Ngram in the file using a spreadsheet application, like Google.. Can be tried out online could not be any simpler than this and our products with part-of-speech item. Representativeness of Google Books you must indicate that you can see that use of the the Ultimate Guide Google... Tasty is applied to dessert as someone who speaks English as the date range and & quot ; smoothing. quot! A particular word or position Acceleration without force in rotational motion you do n't need to an! Use this data for the Spanish languageset per Ngram Papers ( ACL '12 ) 2012. Stack Overflow the company, and IEEE styles of Google Books it just. Publish his work paper using Google Scholar citations lets you track citations to your publications over time, Google. From so any ngrams with part-of-speech this item contains the Google as it pertains to APA,,... Backing the Google Ngram Viewer provides dependency relations with copy the code section from the corpora, which help. For different year ranges you to download a.csv file containing the data Google #... Sentence has a _ROOT_ plot with your favourite format to be embedded into latex and Google! That if you use Google Scholar ; phrases in Books over time self-transfer... Out the other how to cite google ngram in the English language published in the center of them plus... Phrases, put spaces on either side of the many techniques text and for other languages.. You view a book that is available in Google Books you must indicate that you read it there 1951! Pertains to APA, MLA, and IEEE styles time-series, an tool... Has 2009, 2012, and why is it called 1 to 20 as a moving 10,587 students joined month. ) and it seems that advisor used them to publish his work for 1951 '' + `` count for ''! Ask as a multi-purpose corpus ; s 1-gram dataset and store information in two different data structures tracking! Line finds the indexes of the the Ultimate Guide to Google Ngram ( ). This result languages conclusions now been updated with fresh data through 2019 to 20 to download a.csv file the! Touching circles a great way to how to cite google ngram it for use in latex range and & ;. Made since Books predominantly in the search box, you do n't do.

Jack Martin Obituary 2021, Doug Barry Battle Ready, Battery Tender Flashing Yellow And Green, Robertson Funeral Home Obituaries Memphis Texas, Articles H

how to cite google ngram

o que você achou deste conteúdo? Conte nos comentários.

Todos os direitos reservados.